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Consider a symmetric heavy gyroscope rotating in a universal suspension 
with the axis of the external ring vertical. The resulting motion has 
much in common with the well-studied case of Lagrange motion. One might 
also consider the simpler question of stability with respect to the angle 
of nutation I1 1. 

Questions concerning the stability for all variables of the problem 
have been recently dealt with by Magnus [2 1 and Rumiantsev [3 I. 

1. Let us consider a gyroscope in a universal suspension as shown in 
Fig. 1. We denote by x1, rlS and z1 the fixed coordinate system, by $ 
the angle of rotation of the (external) ring, by f? the angle of rotation 
of the housing in the ring, by X, y, and z axes fixed on the housing, and 
by $ the angle of rotation of the gyroscope in the housing. 

I 

Fig. 1. 

The projections of the angular velocity of the casing onto the X, y. 
and z axes are given by 

p” = 0’, go = +‘sin 8, P= (/costI 
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The projections of the angular velocity of the gyroscope onto these 
same 8XeS 8l-Z 

p = 0*, q = +‘sinB, r = p’ + +’ ~5s @ 

The kinetic energy of the external ring is 

+Jtp 

where J is the moment of inertia of the ring about the x1 axis. 

The kinetic energy of the casing is 

f (A”po2 + B”qo2 + C”ra) 

where A’, B”, and Co are the moments of inertis of the casing about the 
xl y, and z axes respectively. We shall assume these to be the principal 
axes of the ellipsoid of inertia of the gyroscope casing about the fixed 
point 0. 

The kinetic energy of the gyroscope is 

$ (Ap2 + Aqa + Cr2) 

where A is the moment of inertia of the gyroscope about the x or y axis, 
and C is the moment of inertia about the z axis. 

We shall assume the ellipsoid of inertia of the gyroscope about 0 to 
be an ellipsoid of rotation about the z axis. 

Then the total kinetic energy is given by 

2T = +‘2 (3 + (A + a”) sin2 6 + C” ~0.9 e) + fA4 + A~) 5’” .+ C (9’ -+- +’ cos (3)” 

Using this expression we can write Lagrange’s equations, since $, 8, 
and 4 are independent variables which fully determine the position of the 
system (holonomic variables]. These equations 8re 

-$- {(J’ (J+ (A + B”) sin* 0 + C” co@ 0) + C cos 0 (cp’ Jr $’ cos 6)) = QJ, 

-$ C(9’ -+‘cosO)=Qv 

Here Qe&@ is the work done by the forcesfacting on the system) when 
the system rotates through an angle 68 about the x axis, Q@$ is the 
work done when the ring together with the casing and gyroscope ratates 
through an angle 6 r/l about the z1 axis, and Q 
the gyroscope rotates through an angle 84. 

ss 
6 d, is the work done when 

2. Let us assume that the suspension is frictionless, thst the forces 

acting on the system are gravitational, that the center of gravity of the 

casing and gyroscope lies at a distance 6 from the origin 0 along the L 
8XiS, 8nd that the z1 axis is vertical. 



On a gyroscope mounted in a universal suspension 

Then Lagrznge’s equations of motion 
integrals: 

lead to the following first 

523 

of+ jr’cos0 = PO 

&’ (J+ (A + B”) sin2 8 + C” cos2 0) + C (cp’ + JI’ co5 0) cos 0 = k 

$‘2 (J+ (A+ BO) sinZ3+ Co ~09 e) + (A + -40) 8’2 + C (9’ + (9 cos ep =- Zmg< cos e + h 

The first two of these are the integrals related to the cyclic coordi- 
nates 4 and $4 

The last integral, representing the kinetic energy. could also have 
been obtained directly, since the actual displacements are possible dis- 
placements, and the force can be described by the potential 

u = -??z&cose 

Here rO, k, and h are the constant values of the first integrals, and R 
is the mass of the gyroscope and casing. 

3. We can now write the differential equations for the Euler angles 

9% 8, and 4. These equations are 

de 2 

( ! 

(a - au) (c - i.?uy - (p - brouy 

dt” e - eu2 

d3( $ - brou 

cEt = E - eua 

d9 
dt=ZPO--U 

p - br,u 

s-eu* 

Here we have used the following notation 

u = c0se 

h - Cro” 
Q== AfA” I .=~>O, J+,A,f,oB”>O 

A+B”--C” k 
e= A+A4 ’ j3== _J+/p 7 b= A;_@? >o 

It is simplest to start by integrating the first equation, which gives 

u 

* s (E - eU2) du 

r/p@ - au) (s - eua) - (3 - br,p)dj (E - eu”) (1 - u”) = ’ - to 
*o 

After inverting this hynerelliptic integral (that is, after solving 
for a in terms of t). the calculation of $ and # reduces to quadratures. 

Let us write 
f (u) = (E - (224) (c - euz) - (9 - Pw~)~ 

If e > 0, which is true for most practically interesting cases, the 
polynomial f(u) has three real roots lying in the intervals 
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The values of u in the mechanical problem vary within that interval 
between two adjacent points of the set (- 1. + 
the point uu. 

The forms of the differential equations for 
definite sequence in which they are integrated 
the nutational motion of the gyroscope axis is 
it is in the case of Lagrange motion. 

1, Ul’ u2 1 which contains 

Euler‘s angles and the 
show that in our problem 
a controlling factor. as 

For the case of pseudoregular 
t ions 

%#O, 

and if r. is very large, we have 

precession given by the initial condi- 

PO = 0, Qo = 0 

and therefore 
p - br,u, = 0, a-uuo=O 

This gives 

f (4 = (110 - u) [a (c - eu2) - bZro2 tuo - u)] 

a (c - eu2) 
uo - 241 == &{;A > 0 

so that for sufficiently large r. we find that u varies in the interval 

(U,. u2 = u,), and this interval gets smaller as r0 increases. 

In our problem regular precession is also possible. In this case the 
polynomial f(u) has a multiple root a1 = uz = uo, the conditions for 
which are 

f (no) = 0, f’ (uo) = 0 

From these we obtain 

(A_tB”-- Co) u0+o12 - Cr,& + in& = 0 

The condition that this quadratic equation for $$,’ have real roots is 

or 
CZro2 - 4 (A + B” - Co) u. m& > 0 

C2qo’Z - 4 (A - c + 13” - CO) uomgl; > 0 

The restriction to small deviations of u from unity, for the practi- 
cally interesting cases e > 0. can be obtained in the same way as in 
the Lagrange case. For this it is sufficient to require that the roots 
of the polynomial 

f(l--S-z) 
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be negative, which means that the roots of f(u) lie to the right of l-6. 
Here 6 is a small positive constant. Such a 6 will be the smallest 
positive number satisfying the inequalities 

b+,a - 2ae + e (a - a) + 3ee8 > 0 

{b2roa + (a - a (1 - 6)) -e - 2ae (l-8)) {2bro (p -bra (1 - 6)) - a (E - e (1-B)“) - 

-2e(1 - 6) (a - a(1 - 6))) --ae {-(a-~(1 -6)) (s--e (1 - 8)z) + (p- bro(l - @)a}> 0 

(9 -bra (1 - 8))a - (a -a (1 - 6)) (c - e (1 - 8)a) > 0 

For the practically interesting case 

80 - 0, 00’2 > 0, $J = 0 

these equations can be analyzed in the same way as for Lagrange motion 

[4 1. 
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